多智能体合作估计与学习

(田玉平)SDM50232024春  
2024春
(暂无评价)
  • 课程难度:你猜
  • 作业多少:你猜
  • 给分好坏:你猜
  • 收获大小:你猜
选课类别:专业任务 教学语言:中文
课程类别:专业选修课 开课单位:系统设计与智能制造学院
课程层次:研究生 获得学分:3.0
课程主页:暂无(如果你知道,请点右上角“编辑课程信息”添加!)
课程简介(教工部数据)
本课程主要教学内容是多智能体合作估计和合作强化学习的理论基础、主要算法和应用案例,是适应新一代人工智能快速发展的、控制科学与工程和计算机科学与工程的交叉学科课程。本课程的教学目标是使学生了解分布式估计、滤波、在线优化和强化学习的理论基础和算法框架,拓展学生处理分处理系统(特别是网络化系统)中不确定性的方法,为快速进入前沿课题打下坚实的理论基础。多智能体合作估计和学习课程,主要有一下几部分内容:1)从学习的观点回顾传统的最小二乘/最小方差估计方法、卡尔曼滤波方法和在线优化方法,2)从估计理论出发探讨强化学习的算法基础,3)最小二乘/最小方差估计方法、卡尔曼滤波方法、在线优化方法以及强化学习方法在分布式框架下的发展。该课程既不同于已有控制类课程如系统辨识、优化方法,也不同与机器学习类课程,分布式框架下讨论上述方法,更是全新的研究生课程内容。


The main teaching content of this course is the theoretical foundation, main algorithms, and application cases of multi-agent cooperative estimation and cooperative reinforcement learning. It is an interdisciplinary course that adapts to the rapid development of the new generation of artificial intelligence, and combines control science and engineering with computer science and engineering. The teaching objective of this course is to enable students to understand the theoretical foundations and algorithmic frameworks of distributed estimation, filtering, online optimization, and reinforcement learning, expand their methods of handling uncertainty in distributed processing systems (especially networked systems), and lay a solid theoretical foundation for quickly entering cutting-edge topics.Multi agent cooperative estimation and learning mainly includes the following parts: 1) Reviewing traditional least squares/minimum variance estimation methods, Kalman filtering methods, and online optimization methods from a learning perspective; 2) Exploring the algorithmic foundations of reinforcement learning from the perspective of estimation theory; 3) Least squares/minimum variance estimation methods, Kalman filtering methods The development of online optimization methods and reinforcement learning methods in distributed frameworks. This course is different from existing control courses such as system identification and optimization methods, as well as machine learning courses. It discusses the above methods in a distributed framework and is a new graduate course content.
点评写点评

还没有评论耶!放着我来!

teacher avatar

田玉平

暂无教师主页

其他老师的「多智能体合作估计与学习」课

    田玉平老师的其他课